

기술소개자료

폴리우레탄 입자 및 이의 제조방법

▮ 최성욱 교수(가톨릭대학교 성심교정 바이오메디컬화학공학과)

최성욱 교수(바이오메디컬화학공학과) 폴리우레탄 입자 및 이의 제조방법

기술 정보

기술명	폴리우레탄 입자 및 이의 제조방법			
등록번호	10-2585959	출원번호	10-2021-0045201	
(등록일)	(2023.09.27)	(출원일)	(2021.04.07)	

연구자 소개

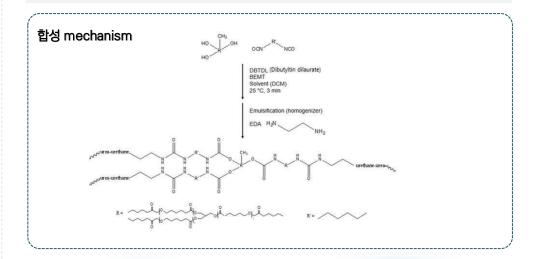
성명	최성욱	직위	교수
소속	가톨릭대학교 성심교정 바이오메디컬화학공학과	연구 분야	나노/마이크로입자, 고분자, 화학소재, 생체재료, 조직공학, 미세유체

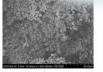
기술 개요

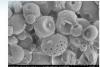
기술 개요

- 본 발명은 **자외선 차단제를 포함하는 폴리우레탄 입자** 및 이의 제조 방법에 관한 것임
- 폴리우레탄은 고분자 내 우레탄 결합(-NHCOO-)을 반복적으로 포함하는 고분자 화합물로, 마찰 및 마모에 강하며, 인장 강도 및 인열 강도 등 기계적 물성이 우수한 점에서 굉장히 넓은 분야에서 다용도로 활용되고 있음
- 또한, 생분해성 및 생체적합성이 우수하며, 신축성 및 단단한 특성으로 인하여 의료분야에서 혈액 및 인체조직 등에 사용되는 생체재료로써 널리 사용되고 있으며, 최근에는 약물 내지 유효성분을 함입 또는 담지시키기 위한 매개체 또는 담체로써 활용하기 위한 연구가 화장품 제조분야에서 진행되고 있음
- 본 발명의 자외선 차단제를 포함하는 폴리우레탄 입자는 **생분해성 및** 생체적합성이 우수하며 가혹한 조건에서도 함입된 유효성분의 안정적 보관이 가능한 장점을 가짐

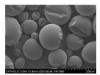
기술 개발 단계


응용 분야	고분자 생체재료(Polymeric Biomaterials), 약물전달체			
개발 단계	기초이론 /실험 /성능평가 시작품제작 /성능평가 시제품인증 표준화			
효과	생분해성 및 생체적합성 우수 함입 유효성분의 안정적 보관 가능			

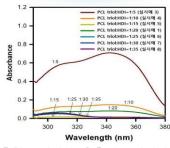

기술의 특장점 > 입자 내 유효성분을 함입시킬 수 있고, 탄력성, 생분해성 및 생체적합성이 우수한 바, 화장품 조성물, 조직 공학 재료로 활용 가능


본 발명 폴리우레탄 입자

- 장기간 가혹한 조건에서도 유효 성분 내지 약물의 용출 없이 안정적으로 보관
- 화장품 조성물 및 의료분야 생체재료 등 다용도로 활용 가능



SEM 이미지



- → 유기용매 증발, 덴트(dent) 형성
- → 폴리우레탄 구조체 내에 함임된 자외선 차단제를 포함하는 폴리우레탄 입자 제조

자외선 차단제 용출 실험 평가

→ 가혹한 조건에서, 용출되는 자외선 차단제 적은 것 확인(디이소시아네이트계 단량체 15 내지 25몰)

기술 응용분야

응용분야

화장품 조성물, 생체 소재

시장 현황

생체 재료 시장

〈글로벌 생체 재료 시장 규모 및 전망〉

〈글로벌 약물전달체 시장 규모 및 전망〉

- **글로벌 생체 재료 시장 규모**는 2023년 425억 6천만 달러로 **6.4% 연평균 성장률**로 2036년까지 953억 3천만 달러까지 성장할 것으로 예상됨
- 생체 재료 시장은 의료 기술의 발전과 고령화 인구 증가로 계속 성장할 것으로 보이며, 특히 재생 의학, 인공 장기, 수술용 재료 등의 분야에서 성장이 두드러질 것으로 예상됨
- 전 세계 약물전달체 시장은 2020년 5,314억 달러에서 연평균 성장률 3.5%로 성장하여 2025년에는 6,319억 달러에 이를 것으로 예상됨
- 약물전달시스템 기술을 이용한 환자의 상태에 따라 필요한 양을 필요한 시기에, 필요한 곳에 투여하는 맞춤형 투약시대가 도래할 것으로 전망됨

추가 기술 정보

거래유형	기술매매, 라이선스, 기술협력, 기술지도		思熱思
기술이전시 지원사항	노하우 전수 등	명세서 정보	in the second

Contact point

가톨릭대학교 산학협력단

윤태진 차장/ Tel: 02-2164-4738/ E-mail: taejin@catholic.ac.kr 김아람 사원/ Tel: 02-2164-6504/ E-mail hold0919@catholic.ac.kr

